# Gruppo SOCIETÀ METROPOLITANA ACQUE TORINO



PROTEGGIAMO
LA NOSTRA ACQUA
L'AMBIENTE
E LA BIODIVERSITÀ

# LA DEPURAZIONE DELLE ACQUE REFLUE URBANE



Servizi idrici

# **Sommario**

| Il Gruppo Smat e la depurazione delle acque reflue urbane | 01 |
|-----------------------------------------------------------|----|
| L'area servita dall'impianto centralizzato e i collettori | 02 |
| L'inquinamento sottratto ai fiumi                         | 04 |
| L'impianto centralizzato                                  | 06 |
| Sintesi dei processi                                      | 80 |
| La linea acque                                            | 10 |
| - II processo                                             | 12 |
| La linea fanghi                                           | 14 |
| - II processo                                             | 16 |
| Sistemi di controllo                                      | 18 |
| Recupero energetico                                       | 20 |
| Riuso delle acque trattate                                | 21 |
| L'impianto di depurazione e riuso di Collegno             | 22 |
| - Impianti piccoli e medi                                 | 23 |
| Dati tecnici dell'impianto centralizzato                  | 24 |

#### Società Metropolitana Acque Torino S.p.A.

SMAT - Corso XI Febbraio 14 - 10152 Torino
Telefono + 39 011 4645.111 - Telefax + 39 011 4365.575
info@smatorino.it www.smatorino.it







Il Gruppo SMAT, è leader nel campo del servizio idrico integrato dove opera attraverso un sistema produttivo e gestionale che nello scenario internazionale si configura tra i più avanzati e moderni.

Il Gruppo SMAT gestisce le fonti d'approvvigionamento idrico, gli impianti di potabilizzazione e distribuzione di acqua potabile, le reti di raccolta, depurazione e riuso dei reflui urbani, per un bacino d'utenza che supera i 2 milioni di abitanti serviti.

La conduzione e la manutenzione di oltre 7.000 Km di reti fognarie comunali nere, bianche e miste, consente la costante raccolta delle acque reflue urbane di origine civile, industriale e meteorica in tutta l'area servita.

Il controllo degli scarichi industriali in pubblica fognatura, effettuato da SMAT, garantisce il costante funzionamento degli oltre 400 impianti di depurazione piccoli, medi e grandi distribuiti su tutto il territorio servito.

L'impianto di raccolta centralizzato al servizio dell'area metropolitana Torinese, è stato realizzato nel 1984 dal Gruppo SMAT che tuttora lo gestisce con una costante attenzione all'innovazione e all'aggiornamento dei processi di depurazione, di recupero energetico e di riuso delle acque reflue.

L'impianto centralizzato del Gruppo SMAT è il più grande impianto di trattamento chimico, fisico, biologico presente in Italia e rappresenta un concreto punto di riferimento tecnologico per gli elevati standards di qualità raggiunti.

Alla complessità delle sezioni di trattamento primario, secondario e terziario si associano sistemi di recupero energetico che, mediante la cogenerazione di energia termica ed elettrica per oltre 60 milioni di kWh/anno, consentono un notevole contenimento dei costi di gestione.

L'impianto di depurazione si avvale di sofisticate attrezzature per ridurre l'impatto ambientale.

Il personale addetto agli impianti provvede direttamente alle operazioni di sorveglianza dei territori di pertinenza, agli interventi di manutenzione e di controllo dell'efficienza dei macchinari, al monitoraggio delle sezioni di trattamento, delle reti e delle stazioni di sollevamento, all'individuazione ed alla sperimentazione in campo di nuove tecnologie di automazione.

Questa pubblicazione ha lo scopo di illustrare in modo sintetico come funziona l'impianto di raccolta e depurazione centralizzato del Gruppo SMAT con il fine di favorire la responsabile partecipazione di tutti al delicato e complesso processo di risanamento ambientale.



# L'AREA SERVITA DALL'IMPIANTO CENTRALIZZATO DI DEPURAZIONE E I COLLETTORI



Il Po attraversa una pianura di 38.000 Km² in cui vivono oltre 17 milioni di abitanti, pari al 30% della popolazione italiana.

In questa pianura che è pari al 13% della superficie del territorio nazionale è ubicata la più grande concentrazione industriale oggi presente in Italia.

Torino e i comuni della cintura torinese immettono per primi i propri scarichi nel Po rispetto alle altre grandi aree metropolitane che sorgono nella pianura padana.

Quasi 1,5 milioni di abitanti e 1.800 industrie, pari ad oltre 3 milioni di abitanti equivalenti, scaricano annualmente oltre 260 milioni di metri cubi di liquami provenienti da un'area di circa 450 Km².

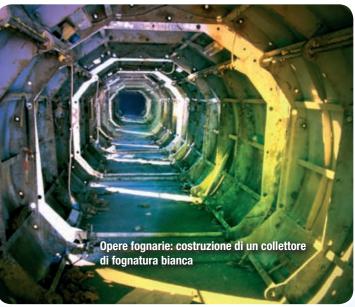
L'area metropolitana torinese, pur rappresentando solo l'1,2% del bacino del Po, contribuisce per circa il 10% al carico inquinante complessivo prodotto dagli scarichi civili e industriali che interessano l'ambito padano.

I reflui prodotti sono convogliati all'impianto di depurazione centralizzato attraverso una rete di collettori intercomunali, appositamente costruiti, che si estende per circa 150 Km.

Le sezioni circolari, policentriche e rettangolari dei

collettori della rete, hanno dimensioni variabili da 50 cm a 260 x 280 cm e sono realizzate con sistemi sia tradizionali sia tecnologicamente avanzati in funzione dell'utilizzazione delle aree e della natura dei terreni attraversati.

Le opere fognarie della rete sono realizzate con elementi prefabbricati o mediante l'impiego di nuovi materiali e getti in opera mentre per gli attraversamenti oltre alle gallerie tradizionali si utilizzano le più moderne tecnologie di scavo meccanizzato.


Le opere realizzate sono in grado oggi di convogliare all'impianto fino a  $16~\text{m}^3/\text{s}$  di liquame ma la rete è in fase di costante ampliamento e miglioramento.

Lungo la rete sono ubicate 6 stazioni di sollevamento che consentono di immettere nelle dorsali principali le acque raccolte a quota più bassa.

Alcune notevoli opere idrauliche, costituite da sifoni a gravità, permettono alla rete l'attraversamento del Po e dei suoi affluenti mentre un sistema di telecomando consente di operare dall'impianto sui nodi più funzionalmente significativi della rete.









# L'INQUINAMENTO SOTTRATTO AI FIUMI



# Inquinamento annuo sottratto ai fiumi

| Portata trattata                                    | 200.000.000 | m³/anno |
|-----------------------------------------------------|-------------|---------|
| Grigliato estratto                                  | 1.600.000   | Kg/anno |
| Oli e grassi raccolti                               | 5.000       | m³/anno |
| Sedimento rimosso                                   | 1.200.000   | m³/anno |
| Inquinamento organico eliminato (BOD <sub>5</sub> ) | 33.000.000  | Kg/anno |
| Detersivi eliminati                                 | 1.700.000   | Kg/anno |
| Azoto ammoniacale ossidato                          | 4.700.000   | Kg/anno |
| Fosfato totale abbattuto                            | 700.000     | Kg/anno |
| Metalli pesanti eliminati                           | 60.000      | Kg/anno |
| Fanghi smaltiti (sostanza secca)                    | 30.000      | t/anno  |



| Portata media giornaliera | m³/d | 615.000 |
|---------------------------|------|---------|
| Portata media oraria      | m³/h | 25.625  |
| Portata oraria diurna     | m³/h | 32.000  |

# Parametri delle acque reflue in entrata e in uscita dall'impianto

|                          | entrata |     | uscita |     |
|--------------------------|---------|-----|--------|-----|
| SST medio                | mg/l    | 200 | mg/l   | 8   |
| SST massimo              | mg/l    | 980 | mg/l   | 30  |
| BOD <sub>5</sub> medio   | mg/l    | 200 | mg/l   | 5   |
| BOD <sub>5</sub> massimo | mg/l    | 500 | mg/l   | 24  |
| COD medio                | mg/l    | 374 | mg/l   | 26  |
| COD massimo              | mg/l    | 940 | mg/l   | 81  |
| NH <sub>4</sub> medio    | mg/l    | 26  | mg/l   | 3   |
| NH <sub>4</sub> massimo  | mg/l    | 44  | mg/l   | 10  |
| P tot. medio             | mg/l    | 4,4 | mg/l   | 1,2 |
| P tot. massimo           | mg/l    | 7,8 | mg/l   | 2,7 |

# L'IMPIANTO CENTRALIZZATO DI DEPURAZIONE

**LINEA FANGHI** 

**Preispessimento** 

Postispessimento e condizionamento

**Filtropressatura** 

Disidratazione con centrifughe Filtrazione fanghi

**Essicamento** 

e recupero sabbie

Deodorizzazione linea fanghi

Deodorizzazione preispessimento

Centrale recupero

Lavaggio

Gasometri

energetico

Digestione

12

13

14

**15 16** 

18

19

20

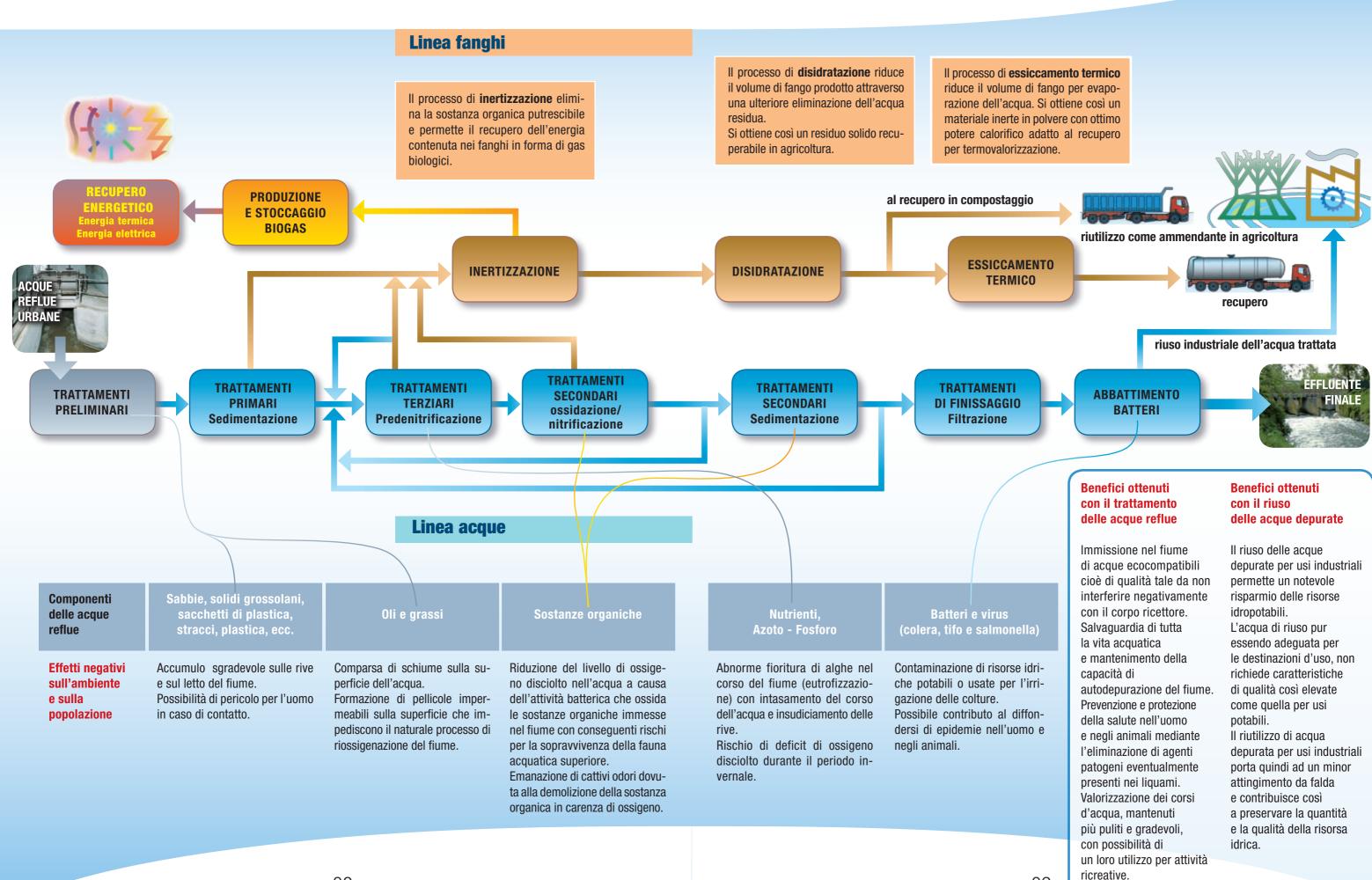
21

22

23

# Desabbiatura e disoleatura Sedimentazione primaria Denitrificazione 6 Ossidazione biologica Sedimentazione secondaria 8 Defosfatazione 9 Filtrazione finale 10 Acquedotto industriale Sollevamento finale Palazzina Uffici

LINEA ACQUE


**Edifici servizi** 

Officine

Grigliatura

Deodorizzazione e grigliatura

## LA SINTESI DEI PROCESSI



# LA LINEA ACQUE



Nelle due sezioni di grigliatura per prima cosa si procede all'eliminazione dei materiali grossolani che vengono successivamente inviati alla discarica dei rifiuti urbani.

Il liquame passa poi in vasche di volume sempre maggiore dove abbandona prima le sabbie e le sostanze oleose, nella sezione di desabbiatura e disoleatura e dopo la quasi totalità del materia-le in sospensione nella sezione di decantazione primaria.

I fanghi primari così prodotti sono raccolti in due pozzi dai quali vengono pompati alla linea di trattamento.

Dopo la sedimentazione primaria i liquami entrano nelle vasche di predenitrificazione dove attraversano una fase priva di ossigeno e successivamente passano alla fase di ossidazione.

L'ossidazione biologica consente la demolizione delle sostanze organiche riproducendo ed accelerando il naturale processo di autodepurazione delle acque.

Nelle vasche di ossidazione, l'immissione forzata di aria dal fondo mediante diffusori che la distribuiscono finemente, consente infatti la crescita di batteri, il cosiddetto fango attivo.

Le colonie di batteri che compongono il fango attivo, mediante il loro metabolismo in presenza di ossigeno, operano l'ossidazione della sostanza organica producendo anidride carbonica (ossidazione), inglobano fisicamente all'interno di fioc-

Diffusore vasche di ossidazione

Ossidazione biologica

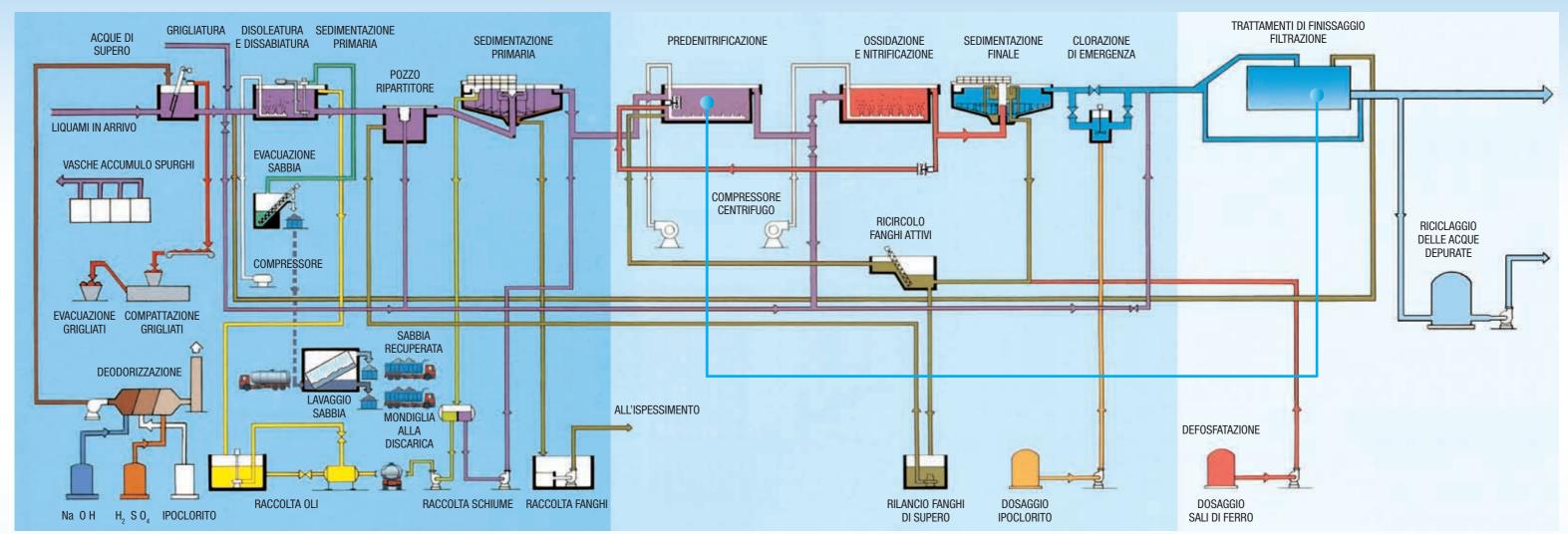
chi di fango attivo le particelle in sospensione di più piccola dimensione ed infine agevolano l'ossidazione dell'azoto ammoniacale a nitrato (nitrificazione).

I fanghi attivi in sospensione nel liquame (miscela aerata) vengono quindi ricircolati in ingresso alle vasche di predenitrificazione con un rapporto di ricircolo 3.

In contemporanea sono trasferiti all'ultima fase di sedimentazione secondaria, dove vengono raccolti sul fondo conico delle vasche circolari e ricircolati in testa alle vasche di predenitrificazione mediante pompe a coclea.

Sempre nelle vasche di sedimentazione secondaria si decanta l'acqua depurata biologicamente.

Parte del fango attivo viene continuamente estratto dal ciclo ed inviato alla linea fanghi per il trattamento garantendo quindi il giusto ricambio.


L'effluente finale è quindi sottoposto a filtrazione su letti multistrato con sabbia e carbone per eliminare quasi totalmente le residue particelle in sospensione.







# LA LINEA ACQUE. IL PROCESSO



## **Trattamento primario**

**Grigliatura:** due sezioni simili in edifici coperti composte ciascuna di quattro sgrigliatori (larghezza 2 m e luce 15 mm) organizzati in due linee parallele con nastro trasportatore di raccolta e compattatore oleodinamico di capacità 10 m³/h.

**Deodorizzazione:** a servizio dell'edificio grigliatura mediante lavaggio acido, basico e ozonizzazione con portata di aria trattata di 25.000 m<sup>3</sup>/h.

**Desabbiatura e disoleazione:** quattro coppie di bacini rettangolari dotati di sistema di aerazione per la flottazione delle sostanze oleose, di estrazione delle sabbie mediante air-lift e raccolta delle sabbie con sei classificatori sabbie.

**Recupero delle sabbie:** impianto di trattamento meccanico di depurazione per lavaggio e centrifugazione con recupero delle sabbie per uso edile.

Decantazione primaria: in otto vasche circolari dotate di ponte rotante con lama di raccolta dei fanghi sedimentati e di raccolta dei fanghi primari e secondari in due pozzi dove avviene l'estrazione temporizzata per l'invio all'ispessimento.

**Predenitrificazione:** in dodici vasche anossiche dove il liquame e i fanghi attivi ricircolati insieme alla miscela aerata vengono mantenuti in agitazione da trentasei mixer sommersi.

Ossidazione biologica: in ventiquattro vasche rettangolari mediante processo a fanghi attivi con ricircolo del fango (concentrazione 2 g/l) e con sonde per la rilevazione continua della concentrazione di ossigeno disciolto.

#### Trattamento secondario

**Aerazione:** mediante insufflazione d'aria a bolle fini (~2.400 diffusori/vasca per un totale di 59.000 diffusori) prodotta da dodici turbocompressori a portata variabile (33.000 Nm³/h cadauno) in funzione della concentrazione di ossigeno disciolto rilevato nelle vasche.

Ricircolo della miscela aerata: mediante trentasei pompe ad elica sommerse che producono una portata da 3 a 4 volte la portata influente all'impianto.

**Decantazione secondaria:** ventiquattro vasche circolari con ponti ad aspirazione rapida del fango.

Ricircolo del fango attivo: mediante dodici coclee azionate da gruppi motoriduttori.

Fango di supero: estrazione del fango di supero mediante pompe centrifughe per l'invio al trattamento in linea fanghi.

## **Trattamento terziario**

**Defosfatazione:** mediante coprecipitazione chimica dei fosfati per additivazione di sali di ferro nei fanghi di ricircolo. Stoccaggio sali: 480 m<sup>3</sup>.

**Filtrazione finale delle acque:** 27 filtri multistrato (ghiaietta, sabbia, carbone) dotati di dispositivi di controlavaggio ad acqua e aria compressa. Potenzialità: 27.000 m<sup>3</sup>/h.

Riciclaggio delle acque depurate: impianto di debatterizzazione mediante dosaggio di ipoclorito di sodio con un tempo di contatto di oltre 60 minuti alla massima portata.

Tre pompe di rilancio centrifughe da 200 kW azionate a velocità variabile per una portata massima di 500 l/sec. Diametro di 600 mm. con 5 camere di dispacciamento distribuite nel percorso di un acquedotto industriale lungo 5 Km.

# LA LINEA FANGHI





I fanghi provenienti dalla linea acqua, nella fase di preispessimento sono sottoposti ad un primo addensamento che ne aumenta la concentrazione.

L'ispessito è raccolto in un pozzo di accumulo e di qui pompato nei digestori mentre le acque di risulta, come tutte le altre ottenute nelle successive fasi, vengono inviate in testa all'impianto per il trattamento.

La fase di digestione realizza la trasformazione della sostanza organica in inorganica attraverso l'azione di batteri anaerobi che si sviluppano alla temperatura di 35°- 38°C alla quale viene mantenuto il fango nei digestori.

Tale trasformazione consente la produzione di gas biologico composto da circa il 70% di metano con il 30% di  $\mathrm{CO}_2$  che viene ricircolato in parte all'interno dei digestori, per permettere l'agitazione dei reattori e in parte viene stoccato in gasometri per la successiva combustione nei motogeneratori o nelle caldaie.

Il calore recuperato, tramite scambiatori acqua/ fango, permette di mantenere a temperatura costante i digestori.

Il processo si completa dopo circa 20 giorni di permanenza del fango nei digestori, quando termina il processo di mineralizzazione.





Dopo un ulteriore addensamento nella fase di postispessimento, il fango, che ha ora raggiunto una concentrazione di circa il 4% di sostanza secca, viene condizionato mediante l'aggiunta di sale ferrico e latte di calce, al fine di farlo precipitare in fiocchi e di migliorarne le caratteristiche di filtrabilità.

Filtropresse a camere sono impiegate nella fase finale di disidratazione, dove il fango, pompato fino ad una pressione massima di 15 bar, raggiunge un tenore di secco superiore al 40%, idoneo allo smaltimento nelle discariche dei rifiuti urbani.

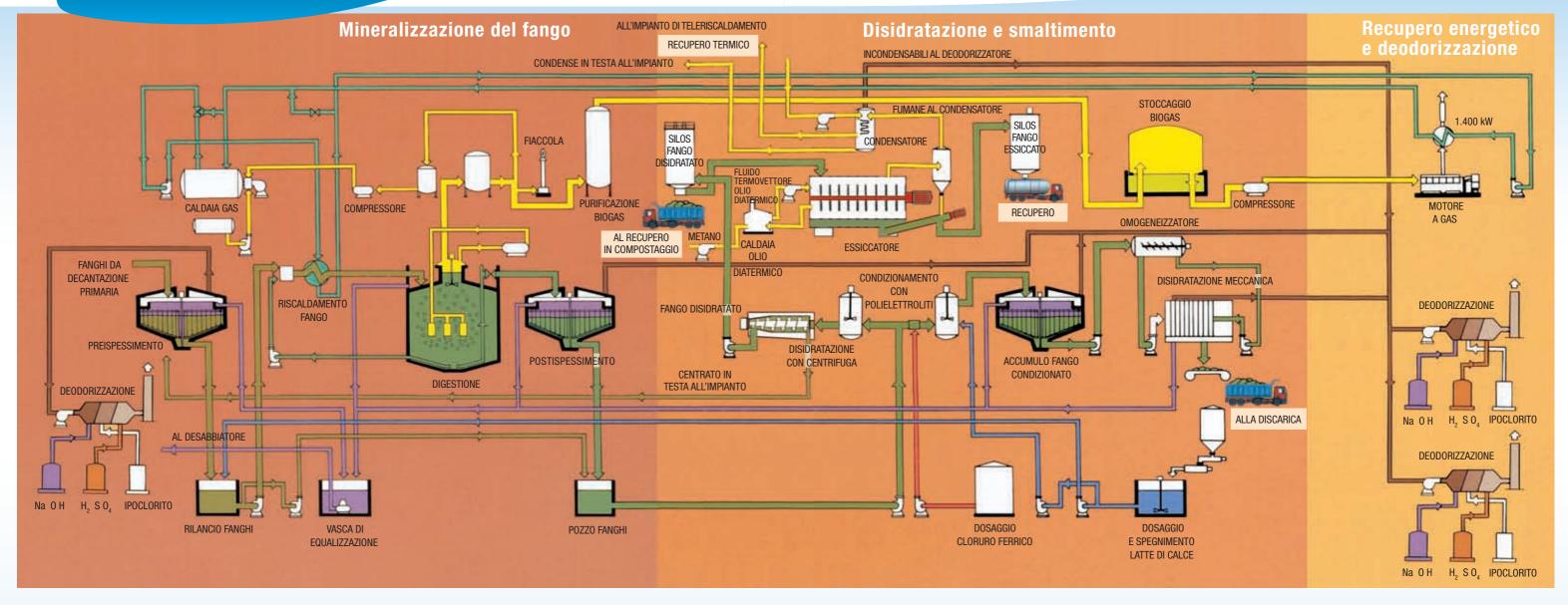
La fase finale di disidratazione è anche condotta per mezzo di quattro centrifughe ad alte prestazioni che trattano il fango filtrato e condizionato con polielettroliti sottoponendolo ad una forza centrifuga di 3.000 g.

Il fango disidratato viene trasferito ai silos di stoccaggio mediante pompe alternative ad alta pressione ed è adatto al recupero in agricoltura come ammendante organico oppure come ammendante compostato.

Parte del fango disidratato viene pompato all'impianto di essiccamento costituito da un essiccatore a riscaldamento indiretto a olio diatermico con singolo passaggio. Il fluido termovettore olio diatermico è riscaldato in una caldaia a metano.



Il vapore prodotto (fumane) è condensato con recupero di acqua calda a 80°C utilizzata per riscaldare i digestori.


Gli incondizionabili sono inviati al deodorizzatore e le condense in testa alla linea acqua per il trattamento.

Il fango essiccato è inertizzato dopo 8 -10 ore intorno alla temperatura di 101-107°C e viene prodotto sotto forma di piccoli granuli, idonei al recupero per termovalorizzazione o all'utilizzo come combustibile per cementerie.

Dalla combustione del gas biologico prodotto in misura di circa 55.000 Nm³/giorno, si ottiene il fabbisogno di calore di tutto l'impianto e circa il 50% del fabbisogno di energia elettrica, consentendo un notevole risparmio economico.

L'aria estratta dalle vasche coperte e dall'edificio delle filtropresse viene deodorizzata con un impianto analogo a quello della grigliatura ma di potenza doppia.

### LA LINEA FANGHI. IL PROCESSO



**Preispessimento:** a gravità in sei vasche con ponte sospeso rotante per la raccolta del sedimento.

L'estrazione del fango avviene sia dal fondo sia da altre 3 uscite a livelli differenti.

Le acque di risulta escono attraverso lo stramazzo circolare superiore. Il fango preispessito (4% S.T.) è raccolto in un pozzo di accumulo mentre in un altro pozzo si deposita il fango avvelenato.

**Digestione:** processo anaerobico con sei digestori riscaldati dotati di dispositivo di agitazione con ricircolo di biogas mediante compressori a palette.

#### Ricircolo dei fanghi con pompe centrifughe:

riscaldamento con scambiatori di calore acqua/ fango e con recupero di calore dai motogeneratori o mediante riscaldamento con caldaie a metano/ biogas. **Postispessimento:** a gravità in quattro vasche coperte analoghe ai preispessitori.

**Condizionamento:** il processo avviene mediante la miscelazione con sali di ferro e latte di calce.

Lo stoccaggio del fango così condizionato è realizzato in sei vasche coperte.

**Disidratazione:** si realizza per mezzo di 6 filtropresse a piastre di capacità pari a 68 m³ ciascuna che trattano il fango condizionato con calce e cloruro ferrico.

Il caricamento avviene mediante pompe monovite a pistone membrana con pressione massima 16 bar. Il fango estratto viene condotto allo stoccaggio provvisorio interno e quindi prelevato per lo smaltimento in discarica oppure per il recupero in agricoltura come ammendante organico.

Si realizza inoltre per mezzo di 4 centrifughe ad alte prestazioni di capacità 80 m³/ora ciascuna che trattano il fango condizionato con polielettroliti.

Il caricamento avviene attraverso appositi filtri mediante pompe monovite.

Il fango estratto viene trasferito al silos di stoccaggio mediante pompe alternative ad alta pressione.

Dal silos di stoccaggio il fango disidratato viene prelevato per il trasporto verso gli impianti di recupero in agricoltura per il compostaggio come ammendante organico.

**Essiccamento:** il fango disidratato con centrifuga viene dosato all'essiccatore per mezzo di una pompa alternativa a pistone.

L'essiccatore a pale a riscaldamento indiretto con olio diatermico a 200°C provvede all'evaporazione

termica dell'acqua contenuta.

Le fumane vengono condensate con recupero di calore per il riscaldamento dei digestori e gli incondensabili vengono inviati al deodorizzatore.

Le condense vengono rinviate in testa alla linea acque per il trattamento.

Il fango essiccato è inertizzato termicamente e viene inviato al recupero per termovalorizzazione.

Recupero energetico: la sezione di recupero energetico è costituita da 4 motori a gas accoppiati ad alternatori da 1.000 kwe di potenza.

Il calore recuperato dall'acqua di raffreddamento e dai gas di scarico è utilizzato per il riscaldamento del fango a 38°C nei digestori.

**Deodorizzazione:** lavaggio aria da pre e postispessitori e filtropresse.

Capacità fino a 96.000 Nm<sup>3</sup>/h.

# SISTEMI DI CONTROLLO

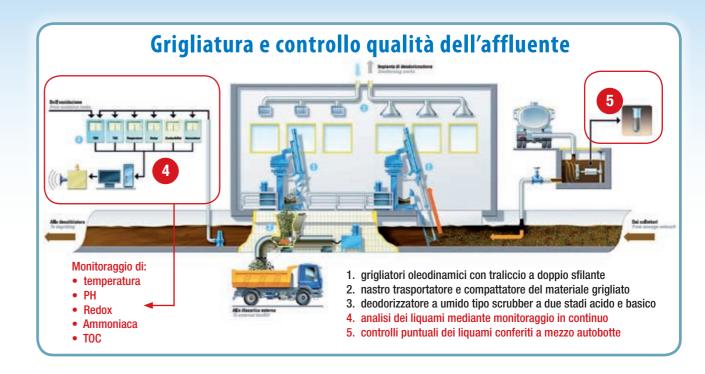


Videate del sistema di controllo automatico

La corretta gestione dell'impianto comporta la tenuta sotto controllo di tutto il processo nelle sue diverse fasi.

I necessari e tempestivi interventi operativi devono essere decisi sulla base di informazioni scientificamente esatte e rapidamente disponibili.

Le tecniche di analisi chimico-fisiche adottate dalla SMAT S.p.A. sono supportate da campionamenti significativi e da dispositivi informatici di presentazione ed elaborazione dei dati che permettono il costante controllo dei processi in base ai tempi fissati, in modo da garantire sempre la sicurezza e la funzionalità dell'impianto e della rete fognaria.


Il sistema integrato adottato sull'impianto prevede la misura in continuo di alcuni parametri come il pH, l'ossigeno disciolto, la portata, la temperatura, l'ammoniaca, i nitrati, il cloro residuo, la velocità e il volume di sedimentazione del fango attivo, mediante strumenti dedicati in campo e procedure di analisi di laboratorio chimiche e biologiche su campioni significativi provenienti da otto stazioni di campionamento automatico ubicate nelle diverse sezioni dell'impianto.

I campionamenti sono effettuati nell'arco delle 24 ore in modo proporzionale alla portata trattata.

In ingresso all'impianto è installata una stazione di analisi automatica per disporre di dati sulla composizione dei liquami.

La stazione automatica è in grado di rilevare i parametri di TOC, pH, di conducibilità e di tossicità in tempo reale.

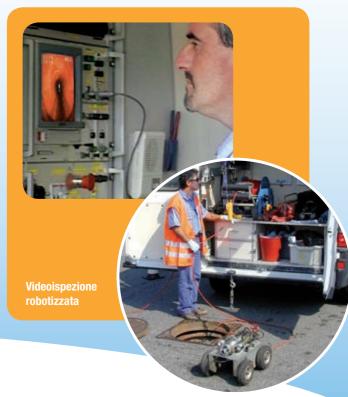
Grazie al collegamento con il sistema informativo dell'impianto è così possibile avviare le opportune procedure automatiche per la salvaguardia dei reattori biologici in relazione alla presenza di



micro-inquinanti tossici organici e inorganici o a eventuali punte di carico organico.

L'impianto di depurazione è gestito grazie ad un sistema di supervisione che controlla 9.000 punti fisici.

Gli operatori si avvalgono di una sala controllo principale e dieci sale controllo periferiche, connesse con una rete fast ethernet in fibra ottica, da ciascuna delle quali è possibile operare su tutto l'impianto.


Il sistema storicizza i dati di funzionamento e le misure degli strumenti in campo.

Diversi sistemi di controllo automatico provvedono al funzionamento dei processi regolando le macchine in funzione dei parametri chimici e fisici misurati on line.

Gli impianti di sollevamento e gli impianti di depurazione sulle reti fognarie gestite sono telecontrollati mediante dispositivi su linea telefonica commutata o GSM.

I telecontrolli sono effettuati sul sistema di supervisione dalle sale controllo dell'impianto di depurazione centrale.

All'esterno dell'impianto opera un servizio di accertamento e rilevamento che ha il compito di controllare la qualità degli scarichi industriali e di verificare l'efficienza degli impianti di pretrattamento aziendali.



#### **RECUPERO ENERGETICO**



Il trattamento biologico di inertizzazione dei fanghi mediante la digestione anaerobica permette una produzione annua di circa 20.000.000 di m³ di biogas, costituito per circa il 70% da metano e per il restante 30% in prevalenza da CO<sub>2</sub>, con un potere calorifico di 5.500 Kcal/Nm³.

Il biogas prodotto alimenta un impianto di cogenerazione costituito da quattro nuovi motori alternativi GE-Jenbacher dalla potenza complessiva di 8.000 kVA calettati su un alternatore AVK, per mezzo dei quali è possibile erogare per ciascun motore 1.400 kW di potenza elettrica e 1.500 kW di potenza termica, quest'ultima recuperata mediante un sistema di scambiatori posti sui circuiti primari dell'olio e dell'acqua e sul circuito dei fumi di scarico.

I nuovi motori, entrati in produzione nel 2009, consentono un incremento di produzione di energia termica ed elettrica rispetto a quelli precedentemente installati.

E' anche possibile l'impiego, ma solo in piccola percentuale, di gas naturale prelevato da rete come combustibile, al fine di ottenere un maggior recupero energetico.

L'energia elettrica autoprodotta dall'impianto di cogenerazione può raggiungere 30.000.000 di kWh/anno e contribuisce a coprire il 47 % del totale di energia elettrica consumata dall'impianto di depurazione centralizzato, con un aumento di oltre il 20% rispetto alla precedente produzione. Il tasso di disponibilità raggiunto dall'impianto di cogenerazione è circa dell'87%.

Con l'energia termica prodotta vengono riscaldati i

fanghi nel processo di digestione anaerobica, dove sono mantenuti a una temperatura di circa 40°C.

Una rete di teleriscaldamento interna all'impianto provvede al riscaldamento degli edifici tecnici e delle palazzine uffici/servizi.

Il recupero energetico attuato consente di ottenere elevati rendimenti, l'abbattimento dei costi per l'acquisto di energia primaria, e non ultima, la riduzione delle emissioni in atmosfera per oltre un milione di tonnellate di anidride carbonica, a vantaggio della salvaguardia dell'ambiente.

# RIUSO DELLE ACQUE TRATTATE





Un impianto di acquedotto provvede al recupero delle acque depurate ed alla loro distribuzione per usi agricoli e industriali.

Le opere di presa prelevano l'acqua a valle della filtrazione finale a sabbia e carbone.

Un impianto di dosaggio di ipoclorito di sodio, grazie ad elevati tempi di contatto in una vasca

di accumulo a labirinto, provvede alla debatterizzazione.

L'acqua così trattata viene immessa in una tubazione in pressione lunga 5 Km di diametro 600 mm da tre pompe centrifughe a velocità variabile della potenza di 200 kW ciascuna.

La potenzialità dell'impianto è di circa 500 l/sec.

#### CARATTERISTICHE DEI GRUPPI DI COGENERAZIONE

| Motori                             | 4 motori - GE Jenbacher tipo JGS 420  |
|------------------------------------|---------------------------------------|
| Cilindri                           | 20 – 4 tempi                          |
| Velocità                           | 1.500 giri/minuto (rpm)               |
| Potenza termica                    | 3.500 kW                              |
| Cilindrata                         | 61,1 litri                            |
| Consumo a 4/4                      | 540 Nm³/h biogas                      |
| Potenza scambiatori:               |                                       |
| - acqua/acqua                      | 671 kW                                |
| - acqua/gas di scarico             | 613 kW                                |
| Alternatore                        | AVK, tensione 6,3 kV, frequenza 50 Hz |
| Potenza nominale                   | 2.150 kVA                             |
| Potenza erogata a cos - $\Phi$ 0,8 | 1.400 kW                              |

# L'IMPIANTO DI DEPURAZIONE E RIUSO DI COLLEGNO



Deodorizzazione vasche

L'impianto di depurazione sito in Collegno tratta gli scarichi civili ed industriali dei Comuni di Collegno, Grugliasco, Rivoli e Villarbasse.

L'impianto configurato su due linee di trattamento (linea acqua e linea fanghi) ha una portata media di 40.000 m³ al giorno ed una potenzialità di 267.000 abitanti equivalenti.

In particolare il ciclo delle acque prevede una depurazione completa anche dei composti azotati immettendo nel fiume Dora acqua di qualità che supera ampiamente i limiti previsti dalla legislazione vigente.

L'impianto di Collegno è stato il primo in Italia a provvedere al recupero di parte delle acque depurate per usi industriali.

Due impianti per il riuso delle acque producono acqua industriale che viene successivamente immessa in un apposito acquedotto che provvede alla distribuzione, consentendo così un più razionale utilizzo delle risorse idriche naturali.

I fanghi stabilizzati con la digestione anaerobica sono filtropressati e quindi immessi in un impianto dove vengono utilizzati per la produzione di composti.

Per ridurre l'impatto ambientale nella zona, è stato costruito un impianto di deodorizzazione e particolare attenzione è stata posta all'insonorizzazione dei vari comparti.



Il depuratore è dotato di un centro di elaborazione dati computerizzato, che consente l'ottimizzazione, la supervisione e il controllo dell'impianto ventiquattro ore su ventiquattro.

A garanzia della continuità del funzionamento, l'impianto è dotato di un sistema di trattamento chimico fisico di emergenza che può essere messo in funzione in caso di scarichi anomali contenenti sostanze inquinanti quali, ad esempio, metalli pesanti.



# NELL'AREA SERVITA, SMAT GESTISCE OLTRE 400 IMPIANTI DI DEPURAZIONE PICCOLI E MEDI













| LINEA ACQUE                                          |                                        |                  |                                                  |              |                  | TRATTAMENTO SECONDARIO                                   |                   |        |                  |                                              |           |                                  |              |
|------------------------------------------------------|----------------------------------------|------------------|--------------------------------------------------|--------------|------------------|----------------------------------------------------------|-------------------|--------|------------------|----------------------------------------------|-----------|----------------------------------|--------------|
| Parametri acqua in entrata                           |                                        |                  | Superficie totale                                | $m^2$        | 2.280            | OSSIDAZIONE BIOLOGICA                                    |                   |        |                  | BOD <sub>5</sub> medio                       |           | Kg/d                             | 8.800        |
| SST medio                                            | mg/l                                   | 200              | Ponti va e vieni con pompe<br>sabbie ad air-lift |              | 8                | Vasche rettangolari                                      |                   |        | 24               | DOD massims                                  |           | mg/l                             | 16           |
| SST massimo<br>BOD <sub>E</sub> medio                | mg/l                                   | 980<br>200       | Compressori aria di preparazio                   | one          | 3                | Dimensioni                                               | m                 |        | (52x28           | BOD <sub>5</sub> massimo                     |           | Kg/d<br>mg/l                     | 26.400<br>48 |
| BOD <sub>5</sub> massimo                             | mg/l<br>mg/l                           | 500              | Portata cad                                      | I. N m³/h    |                  | Dimensioni                                               | m<br>m³           |        | x83x20           | BOD <sub>5</sub> rimozione                   |           | ilig/i                           | 91,0 %       |
| COD medio                                            | mg/l                                   | 374              | Serbatoio stoccaggio morchie                     |              |                  | Volume<br>Carico del fango                               | m <sup>3</sup>    |        | 10.000<br>5-0,20 | Ü                                            |           | ., ,,                            |              |
| COD massimo                                          | mg/l                                   | 940              | Estrattori sabbia oleodinamici                   | a paiette    | 9 6              | Età del fango                                            | giorn             |        | 8 - 12           | COD medio                                    |           | Kg/d                             | 28.050       |
| NH <sub>4</sub> medio<br>NH <sub>4</sub> massimo     | mg/l<br>mg/l                           | 26<br>44         | Parametri effluenti:                             |              |                  | Portata oraria max trattabile                            | m <sup>3</sup> /h |        | 37.500           | COD massimo                                  |           | mg/l<br>mg/l                     | 51<br>53.350 |
| P tot. medio                                         | mg/l                                   | 4,4              | SST/BOD/COD medio/massir                         |              | 000 000          | Fango di ricircolo                                       | m³/h              |        | 25.000           | OOD IIIQOOIIIIO                              |           | mg/l                             | 97           |
| P tot. massimo                                       | mg/l                                   | 7,8              | SST medio                                        | Kg/d         | 308.000<br>560   | •                                                        | 00% d             | ella p | ortata)          | COD rimozione                                |           | J                                | 80,5 %       |
| Portata media giornaliera                            | m³/ld                                  | 615.000          | SST massimo                                      | mg/l<br>Kg/d | 583.000          | Tempo di ritenzione<br>Aerazione con bolle fini - diffus | n<br>ori          |        | 4,5              | NU , modio                                   |           | Ka/d                             | 1.750        |
| Portata media oraria<br>Portata massima oraria       | m <sub>3</sub> /h<br>m <sub>3</sub> /h | 25.625<br>48.000 | oor massimo                                      | mg/l         | 1.060            | Diametro diffusore                                       | mm                |        | 59.000<br>213    | NH <sub>4</sub> + medio                      |           | Kg/d<br>mg/l                     | 3,2          |
|                                                      | 3/11                                   | 40.000           | BOD <sub>5</sub> medio                           | Kg/d         | 247.500          | Turbocompressori                                         |                   |        | 12               | NH <sub>4</sub> + massimo                    |           | Kg/d                             | 4.950        |
| TRATTAMENTO PRIMARIO                                 |                                        |                  | ·                                                | mg/l         | 450              | Portata aria /cad.                                       | $N m^3$           | /h :   | 33.000           | 4                                            |           | mg/l                             | 9            |
| GRIGLIATURA AUTOMATICA                               |                                        |                  | BOD <sub>5</sub> massimo                         | Kg/d         | 418.000          | Potenza assorbita da ogni unità                          | kW                |        | 800              | NH <sub>4</sub> + rimozione                  |           |                                  | 90,2 %       |
| Griglie automatiche                                  |                                        | 8                | COD medio                                        | mg/l<br>Kg/d | 760<br>423.500   | RICIRCOLO DEI FANGHI                                     |                   |        |                  |                                              |           |                                  | _            |
| Compattatori del grigliato oleo<br>Dimensione canali |                                        | 2xh2,5           | OOD Miculo                                       | mg/l         | 770              | Coclee                                                   |                   |        | 12               | TRATTAMENTO TERZ                             | IARIO     |                                  |              |
| Luce tra le barre                                    | m<br>mm                                | 12               | COD massimo                                      | Kg/d         | 715.000          | Diametro                                                 | mm                |        | 2.200            | PREDENITRIFICAZIONI                          |           |                                  |              |
| Capacità compattatori                                | m³/h                                   | 10               |                                                  | mg/l         | 1.300            | Potenza cadauna                                          | kW                |        | 90               | Vasche rettangolari                          |           |                                  | 12           |
| DEODORIZZAZIONE LOCALE                               |                                        |                  | SEDIMENTAZIONE PRIMARIA                          |              |                  | Portata cadauna                                          | m³/h              |        | 4.400            | Dimensioni                                   | n° 6      | m                                | 6x50x45      |
| GRIGLIE PRETRATTAMENTI                               |                                        |                  | Vasche circolari                                 |              | 8                | Tasso di ricircolo                                       | m³/h              |        | 70 %             | Dimensioni                                   | n° 6      | m                                | 6x40x20      |
| Ventilatori centrifughi                              |                                        | 2                | Diametro                                         | m<br>3       | 52               | Massima portata                                          | 1119/11           | ,      | 25.000           | Volume                                       |           | $m^3$                            | 110.000      |
| Portata                                              | N m³/h                                 | 23.000           | Volume<br>Superficie                             | m³<br>m²     | 59.440<br>16.981 | RITORNO FANGHI DI SUPERO                                 |                   |        |                  | Pompe di ricircolo a e                       | lica      |                                  | 36           |
| Torre di lavaggio con riempim                        | iento                                  |                  | Velocità ascensionale                            | m/h          | 1,5              | ALLA SEDIMENTAZIONE PRIMAP                               | KIA               |        |                  | Portata massima pompe ricircolo              |           | m³/h                             | 133.000      |
| in materiale plastico                                |                                        | 1                | Tempo di ritenzione                              | h            | 2,4              | Pompe                                                    | 2 /1-             |        | 15               |                                              |           | 111 /11                          | 133.000      |
| Primo stadio                                         |                                        |                  | Parametri effluenti:                             |              |                  | Capacità cadauna                                         | m³/h              |        | 160              | DEFOSFATAZIONE A mezzo dosaggio sal          | i forrioi |                                  |              |
| Acido con soluzione di acido                         | 2/1-                                   | 40               | SST/BOD/COD medio/massir                         | no/rimo      | zione %          | SEDIMENTAZIONE FINALE                                    |                   |        |                  |                                              |           | 9                                | 400          |
| solforico: ricircolo                                 | m³/h                                   | 40               | SST medio                                        | Kg/d         | 66.550           | Vasche circolari                                         |                   |        | 24               | Serbatoi stoccaggio r<br>Pompe dosaggio: con |           | m³<br>l/h                        | 480<br>700   |
| Secondo stadio                                       |                                        |                  |                                                  | mg/l         | 121              | Diametro                                                 | m                 | _      | 54               | P totale in ingresso -                       | •         | Kg/d                             | 1.870        |
| Basico con soluzione                                 | 0.11                                   |                  | SST massimo                                      | Kg/d         | 126.000          | Volume totale<br>Superficie totale                       | $m^3$ $m^2$       |        | 75.600<br>55.000 | r totalo in ingrocco                         | mouro     | mg/l                             | 3,4          |
| di soda: ricircolo                                   | m³/h                                   | 40               | SST rimozione                                    | mg/l         | 228<br>78,4 %    | Velocità ascensionale                                    | m³/h              |        | 0,90             | P totale in ingresso -                       | massimo   | -                                | 3.740        |
| VASCHE DI ACCUMULO SPURGI                            | HI                                     |                  | 001 11110210110                                  |              | 70,4 70          | Tempo di ritenzione                                      | h                 |        | 3,9              |                                              |           | mg/l                             | 6,8          |
| E SCARICO AUTOBOTTI                                  | m3                                     | Avc E            | BOD <sub>5</sub> medio                           | Kg/d         | 97.350           | Ponti ad aspirazione rapida del                          | fango             |        | 24               | P totale in uscita - mo                      | edio      | Kg/d                             | 330          |
| Capacità                                             | m <sup>3</sup>                         | 4x65             | DOD massims                                      | mg/l         | 177              | Parametri effluente                                      |                   |        |                  | P totale in uscita - ma                      | assimo    | mg/l<br>Kg/d                     | 0,6<br>550   |
| VASCA DI EQUALIZZAZIONE DELLE ACQUE TECNOLOGICHE     |                                        |                  | BOD <sub>5</sub> massimo                         | Kg/d<br>mg/l | 170.500<br>310   | SST/BOD <sub>5</sub> /COD/NH <sub>4</sub> +medio/n       | nassir            | no     |                  | i totalo ili doolta ilii                     | 20011110  | mg/l                             | 1,0          |
| Capacità                                             | $m^3$                                  | 2.000            | BOD <sub>s</sub> rimozione                       | 1119/1       | 60,7 %           | /rimozione%                                              |                   |        |                  | P totale rimozione                           |           |                                  | 82,4 %       |
| Pompe di rilancio da 280 m <sup>3</sup> /l           |                                        | 2.000            | 3                                                |              |                  | SST medio                                                | Kg/d              |        | 11.550           | FILTRAZIONE FINALE                           |           |                                  |              |
| DISSABBIATURA E DISOLEATUI                           |                                        | _                | COD medio                                        | Kg/d         | 144.100          |                                                          | mg/l              |        | 21               | Su filtro antracite/sab                      | bia       |                                  |              |
| Canali aerati                                        |                                        | 8                | COD massimo                                      | mg/l<br>Ka/d | 262<br>253.000   | SST massimo                                              | Kg/d              |        | 25.300           | Capacità                                     |           | m³/h                             | 27.000       |
| Dimensioni                                           | m 7,                                   | ,5x6,8x48        | טטט ווומפפוווט                                   | Kg/d<br>mg/l | 460              |                                                          | mg/l              |        | 46               | Velocità massima filtr                       | azione    | m <sup>3</sup> /m <sup>2</sup> h |              |
| Volume totale                                        | m <sup>3</sup>                         | 5.440            | COD rimozione                                    | 9/1          | 66,0 %           | SST rimozione                                            |                   |        | 82,6 %           | Superficie filtri                            |           | $m^2$                            | 1.500        |
|                                                      |                                        |                  |                                                  |              |                  |                                                          |                   |        |                  |                                              |           |                                  |              |

#### Parametri effluente finale TSS/BOD<sub>5</sub>/COD medio/massimo/rimozione%

| SST medio                  | Kg/d                 | 4.950             |
|----------------------------|----------------------|-------------------|
| SST massimo                | mg/l<br>Kg/d         | 16.500            |
| SST rimozione              | mg/l                 | 30<br>57,1 %      |
| BOD <sub>5</sub> medio     | Kg/d                 | 4.400             |
| BOD <sub>5</sub> massimo   | mg/l<br>Kg/d<br>mg/l | 5<br>13.200<br>24 |
| BOD <sub>5</sub> rimozione | IIIg/I               | 48,0 %            |
| COD medio                  | Kg/d<br>mg/l         | 14.300<br>26      |
| COD massimo                | Kg/d<br>mg/l         | 44.550<br>81      |
| COD rimozione              | 1119/1               | 49,0 %            |

#### **DISINFEZIONE FINALE (emergenza)** A mezzo ipoclorito di sodio

| Vasche di contatto<br>Capacità totale | $m^3$ | 3<br>1.000 |
|---------------------------------------|-------|------------|
| Capacità canale di scarico            | m³    | 6.000      |
| Tempo minimo di contatto              | min.  | 16         |

#### IMPIANTO DI RECUPERO DELLE ACQUE DEPURATE Debatterizzazione a mezzo ipoclorito di sodio

| Vasca di contatto e accumulo  | $m^3$ | 1.025 |
|-------------------------------|-------|-------|
| Pompe di rilancio centrifughe |       | 3     |
| Portata massima totale        | m³/h  | 1.700 |

#### **IMPIANTO DI RECUPERO SABBIE**

9 Potenzialità di trattamento



#### LINEA EANCHI

| LINEA FANGHI                                                                                                |                               |                              |
|-------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------|
| Portata media giornaliera<br>al 2% SS<br>Portata massima giornaliera                                        | m³/d<br>m³/d                  | 6.000<br>12.000              |
| PREISPESSIMENTO                                                                                             |                               |                              |
| Vasche circolari coperte<br>Diametro<br>Volume totale<br>Superficie totale<br>Carico<br>Tempo di ritenzione | m<br>m³<br>m²<br>Kg ss/m<br>h | 7.890<br>2.300<br>2 50<br>24 |
| DEODORIZZATORE DEL PREISPESSIMENTO                                                                          |                               |                              |
| Ventilatori centrifughi<br>Portata<br>Torre di lavaggio con riempime<br>in materiale plastico               |                               | 2<br>23.000<br>1             |
| Primo stadio                                                                                                |                               |                              |
| Acido con soluzione di acido solforico: ricircolo                                                           | m³/h                          | 40                           |
| Secondo stadio                                                                                              |                               |                              |
| Basico con soluzione<br>di soda: ricircolo                                                                  | m³/h                          | 40                           |
| DIGESTORI                                                                                                   |                               |                              |
| Primari riscaldati<br>Secondari<br>Diametro/altezza<br>Volume totale                                        | m<br>m³                       | 3<br>3<br>26/30<br>72.000    |
| Agitazione con biogas                                                                                       |                               |                              |
| Tempo di ritenzione                                                                                         | giorni                        | 20/26                        |
| POSTISPESSIMENTO                                                                                            |                               |                              |
| Vasche circolari coperte<br>Diametro<br>Volume totale<br>Superficie totale                                  | m<br>m³<br>m²                 | 4<br>22<br>5.320<br>1.530    |
| CONDIZIONAMENTO FANGHI                                                                                      |                               |                              |
| Serbatoi di agitazione<br>Dosaggio CaO<br>Dosaggio sali di ferro                                            |                               | 8<br>sul secco<br>sul secco  |

#### **ACCUMULO FANGO CONDIZIONATO**

| Vasche circolari coperte |       | 6     |
|--------------------------|-------|-------|
| Diametro                 | m     | 22    |
| Volume totale            | $m^3$ | 7.980 |
| Superficie totale        | $m^2$ | 2.300 |
|                          |       |       |

#### **DISIDRATAZIONE MECCANICA**

| Filtropresse 1.500x1.500 | mm     | 6      |
|--------------------------|--------|--------|
| Piastre filtropressa     |        | 150    |
| Volume totale camere     | $m^3$  | 81     |
| Fango disidratato        | SS 37% | - 42 % |

#### **DISIDRATAZIONE CON CENTRIFUGA**

| Centrifughe              |        | 4          |
|--------------------------|--------|------------|
| Diametro tamburo         | mm     | 725        |
| Velocità di rotazione    | rpm    | 2.800      |
| Accelerazione centrifuga | G      | 3.160      |
| Potenzialità             | 80 mc/ | h di fango |
|                          | al 2   | % di SST   |

#### **STOCCAGGIO FANGO DISIDRATATO**

| Capacità n | 1 <sup>3</sup> 230 |
|------------|--------------------|
|------------|--------------------|

#### **ESSICCAMENTO TERMICO**

#### **Essiccatore indiretto a pale** Fluido termovettore: olio diatermico

| Temperatura di lavoro olio | °C          | 240 |
|----------------------------|-------------|-----|
| Alimentazione a mezzo por  | npa pistoni |     |

#### **Inertizzazione Azoto**

| Potenzialità     | kg. 3.000/3.700            |
|------------------|----------------------------|
|                  | di acqua evaporata all'ora |
| Produttività     | 1,5 t/h di fango           |
|                  | secco al 90% di SST        |
|                  | 2,5 t/h di fango           |
|                  | essiccato al 65% di SST    |
| Recupero termico | 75% a 80°C                 |

#### STOCCAGGIO FANGO DISIDRATATO

**DEODORIZZAZIONE LINEA FANGHI** 

| Capacità             | $m^3$ | 180 |
|----------------------|-------|-----|
| Inertizzazione Azoto |       |     |

#### inertizzazione Azoto

| Ventilatori centrifughi |       | 2  |
|-------------------------|-------|----|
| Volume totale           | $m^3$ | 22 |

| Portata totale                | m³/h | 70.000 |
|-------------------------------|------|--------|
| Torre di lavaggio con riempim | ento |        |
| in materiale plastico         |      | 1      |
|                               |      |        |

#### **Primo stadio**

| Acido con soluzione           |      |    |
|-------------------------------|------|----|
| di acido solforico: ricircolo | m³/h | 85 |

#### **Secondo Stadio**

| Basico con soluzione |      |    |
|----------------------|------|----|
| di soda: ricircolo   | m³/h | 75 |

#### Recupero di calore per aria di aspirazione con recupero statico

#### **STOCCAGGIO BIOGAS**

| Produzione media | N m³/d | 55.000 |
|------------------|--------|--------|
| Gasometri        |        | 3      |
| Volume totale    | $m^3$  | 16.890 |

#### **RECUPERO ENERGETICO**

| Motori a gas biologico |              |       | 4      |
|------------------------|--------------|-------|--------|
| Potenza nominale (cad  | auno) k\     | /A    | 2.150  |
| Potenza termica resa ( | cadauno) k\  | N     | 1.500  |
| Potenza elettrica resa | (cadauno) k\ | N     | 1.400  |
| Produzione energia ele | ettrica      |       |        |
| totale                 | kWh/anno     | 28.00 | 00.000 |

#### **FABBISOGNO ENERGETICO COMPLESSIVO**

| Fabbisogno energia e   | elettrica |            |
|------------------------|-----------|------------|
| (medio)                | kWh/anno  | 61.300.000 |
| Energia elettrica este | rna       |            |
| (da rete)              | kWh/anno  | 33.300.000 |
| Energia termica        |           |            |
| da recupero            | kWh/anno  | 38.750.000 |



# DATI TECNICI IMPIANTO CENTRALIZZATO DI CASTIGLIONE TORINESE

# **EFFICIENZA DELL'IMPIANTO**

# **LINEA ACQUE**

# % di rimozione inquinanti (input-output)

|                                    | %  |
|------------------------------------|----|
| SST/TSS                            | 95 |
| BOD <sub>5</sub> /BOD <sub>5</sub> | 97 |
| COD/COD                            | 89 |
| $NH_4$ + $NH_4$ +                  | 88 |
| Olio e grassi                      | 95 |
| Tensioattivi                       | 93 |
| Alluminio                          | 93 |
| Ferro                              | 85 |
| Manganese                          | 67 |
| Nichel                             | 56 |
| Piombo                             | 98 |
| Rame                               | 90 |
| Stagno                             | 87 |
| Zinco                              | 78 |
| Fenoli                             | 98 |
| Aldeidi                            | 52 |
| Organoalogenati                    | 64 |
| Oli minerali                       | 95 |
|                                    |    |

# **LINEA FANGHI**

| Rimozione sostanza<br>organica                      | (SV%)       | 54 %  |
|-----------------------------------------------------|-------------|-------|
| Produzione specifica<br>biogas                      | (Nm³/Kg SV) | 1.120 |
| Tenore di secco nel disidratato<br>con filtropresse |             | 40 %  |
| Tenore di secco nel disidratato<br>con centrifuga   |             | 27 %  |

### Abbreviazioni ed unità di misura

| (N) m³/h-g<br>(Normal) metri cubi / ora - giorno                 |
|------------------------------------------------------------------|
| m²<br>metri quadri                                               |
| mg/l<br>milligrammi/litro                                        |
| SST<br>Solidi Sospesi Totali                                     |
| BOD <sub>5</sub><br>Richiesta biologica di ossigeno (a 5 giorni) |
| COD<br>Richiesta chimica di ossigeno                             |
| NH <sub>4</sub> +<br>lone ammoniacale                            |

I valori in concentrazione sono riferiti alla media o alla massima dei medi giornalieri



SOCIETÀ METROPOLITANA ACQUE TORINO S.p.A.

Corso XI Febbraio 14 10152 Torino-Italy Tel. +39 011 4645.111 Fax +39 011 4365.575

info@smatorino.it www.smatorino.it